
Getting Started with Parallel Computing using MATLAB on the RCC
HPC Cluster

This document provides the steps to configure MATLAB to submit jobs to a cluster, retrieve

results, and debug errors.

CONFIGURATION – MATLAB client on the cluster

After logging into the cluster, configure MATLAB to run parallel jobs on your cluster by calling the shell

script configCluster.sh This only needs to be called once per version of MATLAB.

$ ml MATLAB

$ configCluster.sh

Jobs will now default to the cluster rather than submit to the local machine.

INSTALLATION and CONFIGURATION – MATLAB client on the desktop

The RCC MATLAB support package can be found at rwth.Desktop.zip.

Please note that the rwth.Desktop.zip linked above has not yet been updated following the migration to

Rocky 9 and has therefore been removed. We are currently working together with MathWorks to adjust

these scripts accordingly.

Download the archive file and start MATLAB. The archive file should be unzipped in the location

returned by calling

>> userpath

Configure MATLAB to run parallel jobs on your cluster by calling configCluster. configCluster

only needs to be called once per version of MATLAB.

>> configCluster

Submission to the remote cluster requires SSH credentials. You will be prompted for your ssh username

and password or identity file (private key). The username and location of the private key will be stored

in MATLAB for future sessions.

Jobs will now default to the cluster rather than submit to the local machine.

NOTE: If you would like to submit to the local machine then run the following command:

>> % Get a handle to the local resources

>> c = parcluster('local');

CONFIGURING JOBS

Prior to submitting the job, we can specify various parameters to pass to our jobs, such as queue, e-mail,

walltime, etc. The following is a partial list of parameters. See AdditionalProperties for the

complete list. Only MemPerCPU and WallTime is required.

>> % Get a handle to the cluster

>> c = parcluster;

[REQUIRED]

>> % Specify memory to use, per core (default: 3900mb)

>> c.AdditionalProperties.MemPerCPU = '6gb';

>> % Specify the wall time (e.g., 1 day, 5 hours, 30 minutes)

>> c.AdditionalProperties.WallTime = '1-05:30';

[OPTIONAL]

>> % Add additional shell commands (e.g., loading modules)

>> % It might be necessary to load further modules such as GCCcore

>> % Check on the Cluster with ‘module spider Gurobi/10.0.0’

>> % MATLAB >= R2022b

>> c.AdditionalProperties.AdditionalShellCommands = …

{'# Load Gurobi', 'module load Gurobi/10.0.0'};

>> % MATLAB < R2022b, The “10” creates a new line.

>> c.AdditionalProperties.AdditionalShellCommands = …

['# Load Gurobi' 10 'module load Gurobi/10.0.0'];

>> % Specify a constraint

>> c.AdditionalProperties.Constraint = 'a-constraint';

>> % Request email notification of job status

>> c.AdditionalProperties.EmailAddress = 'user-id@rwth-aachen.de';

>> % Specify number of GPUs (default: 0)

>> c.AdditionalProperties.GPUsPerNode = 1;

>> c.AdditionalProperties.GPUCard = 'gpu-card';

>> % Specify the partition

>> c.AdditionalProperties.Partition = 'partition-name';

>> % Specify cores per node

>> c.AdditionalProperties.ProcsPerNode = 4;

>> % Specify a project to use for MATLAB jobs

>> c.AdditionalProperties.ProjectName = 'project-name';

>> % Set node exclusivity (default: false)

>> c.AdditionalProperties.RequireExclusiveNode = false;

>> % Use reservation

>> c.AdditionalProperties.Reservation = 'reservation-name';

Save changes after modifying AdditionalProperties for the above changes to persist between MATLAB

sessions.

>> c.saveProfile

To see the values of the current configuration options, display AdditionalProperties.

>> % To view current properties

>> c.AdditionalProperties

Unset a value when no longer needed.

>> % Turn off email notifications

>> c.AdditionalProperties.EmailAddress = '';

>> c.saveProfile

INTERACTIVE JOBS - MATLAB client on the cluster

To run an interactive pool job on the cluster, continue to use parpool as before.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Open a pool of 64 workers on the cluster

>> pool = c.parpool(64);

Rather than running local on the local machine, the pool can now run across multiple nodes on the

cluster.

>> % Run a parfor over 1000 iterations

>> parfor idx = 1:1000

 a(idx) = rand;

 end

Once we’re done with the pool, delete it.

>> % Delete the pool

>> pool.delete

INDEPENDENT BATCH JOB

Use the batch command to submit asynchronous jobs to the cluster. The batch command will return

a job object which is used to access the output of the submitted job. See the MATLAB documentation

for more help on batch.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Submit job to query where MATLAB is running on the cluster

>> job = c.batch(@pwd, 1, {}, 'CurrentFolder','.');

>> % Query job for state

>> job.State

>> % If state is finished, fetch the results

>> job.fetchOutputs{:}

>> % Delete the job after results are no longer needed

>> job.delete

To retrieve a list of currently running or completed jobs, call parcluster to retrieve the cluster

object. The cluster object stores an array of jobs that were run, are running, or are queued to run. This

allows us to fetch the results of completed jobs. Retrieve and view the list of jobs as shown below.

>> c = parcluster;

>> jobs = c.Jobs;

Once we’ve identified the job we want, we can retrieve the results as we’ve done previously.

fetchOutputs is used to retrieve function output arguments; if calling batch with a script, use

load instead. Data that has been written to files on the cluster needs to be retrieved directly from the

file system (e.g., via ftp).

To view results of a previously completed job:

>> % Get a handle to the job with ID 2

>> job2 = c.Jobs(2);

NOTE: You can view a list of your jobs, as well as their IDs, using the above c.Jobs command.

>> % Fetch results for job with ID 2

>> job2.fetchOutputs{:}

PARALLEL BATCH JOB

Users can also submit parallel workflows with the batch command. Let’s use the following example for

a parallel job, which is saved as parallel_example.m.

function [sim_t, A] = parallel_example(iter)

if nargin==0

 iter = 8;

end

disp('Start sim')

t0 = tic;

parfor idx = 1:iter

 A(idx) = idx;

 pause(2)

 idx

end

sim_t = toc(t0);

disp('Sim completed')

save RESULTS A

end

This time when we use the batch command, to run a parallel job, we’ll also specify a MATLAB Pool.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Submit a batch pool job using 4 workers for 16 simulations

>> job = c.batch(@parallel_example, 1, {16}, 'Pool',4, ...

 'CurrentFolder','.');

>> % View current job status

>> job.State

>> % Fetch the results after a finished state is retrieved

>> job.fetchOutputs{:}

ans =

 8.8872

The job ran in 8.89 seconds using four workers. Note that these jobs will always request N+1 CPU cores,

since one worker is required to manage the batch job and pool of workers. For example, a job that

needs eight workers will consume nine CPU cores.

We’ll run the same simulation but increase the Pool size. This time, to retrieve the results later, we’ll

keep track of the job ID.

NOTE: For some applications, there will be a diminishing return when allocating too many workers, as

the overhead may exceed computation time.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Submit a batch pool job using 8 workers for 16 simulations

>> job = c.batch(@parallel_example, 1, {16}, 'Pool', 8, ...

 'CurrentFolder','.');

>> % Get the job ID

>> id = job.ID

id =

 4

>> % Clear job from workspace (as though we quit MATLAB)

>> clear job

Once we have a handle to the cluster, we’ll call the findJob method to search for the job with the

specified job ID.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Find the old job

>> job = c.findJob('ID', 4);

>> % Retrieve the state of the job

>> job.State

ans =

finished

>> % Fetch the results

>> job.fetchOutputs{:};

ans =

4.7270

The job now runs in 4.73 seconds using eight workers. Run code with different number of workers to

determine the ideal number to use.

Alternatively, to retrieve job results via a graphical user interface, use the Job Monitor (Parallel >

Monitor Jobs).

HELPER FUNCTIONS

Function Description Applies Only to Desktop

clusterFeatures List of cluster features/constraints

clusterGpuCards List of cluster GPU cards

clusterPartitionNames List of cluster partition

disableArchiving Modify file archiving to resolve file
mirroring issue

true

fixConnection Reestablish cluster connection (e.g., after
reconnection of VPN)

true

willRun Explain why job is queued

DEBUGGING

If a serial job produces an error, call the getDebugLog method to view the error log file. When

submitting independent jobs, with multiple tasks, specify the task number.

>> c.getDebugLog(job.Tasks(3))

For Pool jobs, only specify the job object.

>> c.getDebugLog(job)

When troubleshooting a job, the cluster admin may request the scheduler ID of the job. This can be
derived by calling getTaskSchedulerIDs (call schedID(job) before R2019b).

>> schedID(job)

ans =

25539

TO LEARN MORE

To learn more about the MATLAB Parallel Computing Toolbox, check out these resources:

• Parallel Computing Overview

• Parallel Computing Documentation

• Parallel Computing Coding Examples

• Parallel Computing Tutorials

• Parallel Computing Videos

• Parallel Computing Webinars

http://www.mathworks.com/products/parallel-computing/index.html
http://www.mathworks.com/products/parallel-computing/index.html
http://www.mathworks.com/help/distcomp/index.html
https://www.mathworks.com/help/parallel-computing/examples.html
http://www.mathworks.com/products/parallel-computing/tutorials.html
http://www.mathworks.com/products/parallel-computing/videos.html
http://www.mathworks.com/products/parallel-computing/webinars.html

